Closing tonight:HW_2C (5.5)Closing Wed:HW_3A, 3B (6.1, 6.2)Closing Mon, Jan 30:HW_3C (6.3)

Exam 1 is Thursday, Jan 26th in your normal quiz section. It covers 4.9, 5.1-5.5, 6.1 and 6.2 Allowed:

- One 8.5 by 11 inch sheet of *handwritten* notes (front and back)
- A Ti-30x IIs calculator (this model only!)
- Pen or pencil (no red or green)
- No make-up exams.

All homework is fair game. Expect problems like the homework. Know the concepts well. Practice on old exams.

Visit office hours 1:15-3:30pm in Com B-006

Ch 6: Basic Integral Applications

<u>6.1 Areas Between Curves</u> Using dx:

Example: Find the area bounded between y = 2x and $y = x^2$.

Using dy:

Area = $\lim_{n \to \infty} \sum_{i=1}^{n} (f(y_i) - g(y_i)) \Delta y$

Example: Set up an integral for the area bounded between $x = 2y^2$ and $x = y^3$ (shown below) using dy.

Summary: The area between curves

- 1. Draw picture finding all intersections.
 - x = a = smallest x-value in region
 - x = b = biggest x-value in region
 - y = c = smallest y-value in region
 - y = d = biggest y-value in region
- 2. Choose dx or dy. And get everything

in terms of the variable you chose.

3. Draw a typical approx. rectangle.4. Set up as follows:

Area =
$$\int_{a}^{b} (\text{TOP} - \text{BOTTOM}) dx$$

Area =
$$\int_{c}^{d} (\text{RIGHT} - \text{LEFT}) dy$$

Example: Set up an integral (or integrals) that give the area of the region bounded by $x = y^2$ and y = x - 2

Set up an integral for the total positive area of the following regions:

