Closing tonight: Closing Wed: Closing Mon, Jan 30: HW_3C (6.3)

Exam 1 is Thursday, Jan $26^{\text {th }}$ in your normal quiz section. It covers 4.9, 5.1-5.5, 6.1 and 6.2 Allowed:

- One 8.5 by 11 inch sheet of handwritten notes (front and back)
- A Ti-30x Ils calculator (this model only!)
- Pen or pencil (no red or green)
- No make-up exams.

All homework is fair game. Expect problems like the homework. Know the concepts well. Practice on old exams.

Visit office hours 1:15-3:30pm in Com B-006

Ch 6: Basic Integral Applications

6.1 Areas Between Curves

Using dx:

(a) Typical rectangle

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x
$$

Example: Find the area bounded between $y=2 x$ and $y=x^{2}$.

Using dy:

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(y_{i}\right)-g\left(y_{i}\right)\right) \Delta y
$$

Example: Set up an integral for the area bounded between $\mathrm{x}=2 \mathrm{y}^{2}$ and $\mathrm{x}=\mathrm{y}^{3}$ (shown below) using dy.

Summary: The area between curves

1. Draw picture finding all intersections. $x=a \quad=$ smallest x-value in region
$x=b \quad=$ biggest x-value in region
$y=c \quad=$ smallest y-value in region
$y=d \quad=$ biggest y-value in region
2. Choose dx or dy . And get everything in terms of the variable you chose.
3. Draw a typical approx. rectangle.
4.Set up as follows:

$$
\begin{aligned}
& \text { Area }=\int_{a}^{b}(\text { TOP }- \text { BOTTOM }) d x \\
& \text { Area }=\int_{c}^{d}(\text { RIGHT }- \text { LEFT }) d y
\end{aligned}
$$

Example: Set up an integral (or integrals) that give the area of the region bounded by $x=y^{2}$ and $y=x-2$

Set up an integral for the total positive area

 of the following regions:

